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A central question for cognitive neuroscience is how feature-combinations that give rise to

episodic/source memories are encoded in the brain. Although there is much evidence that

the hippocampus (HIP) is involved in feature binding, and some evidence that other brain

regions are as well, there is relatively little evidence about the nature of the resulting

representations in different brain regions. We used multivoxel pattern analysis (MVPA) to

investigate how feature combinations might be represented, contrasting two possibilities,

feature-based versus holistic. Participants viewed stimuli that were composed of three

source features e a person (face or body), a scene (indoor or outdoor), and an object (bike or

luggage) e which were combined to make eight unique stimulus identities. We reasoned

that regions that can classify the eight identities (a multiclass classification) but not the

individual features (a binary classification) likely have a holistic representation of each

identity. In contrast, regions that can classify the eight identities and can classify each

feature are likely to contain feature-based representations of these identities. To further

probe the extent of feature-based or holistic classification in each region, we developed and

validated a novel approach that directly compares binary and multiclass classification. We

found clear evidence for holistic representation in the parahippocampal cortex (PHC),

consistent with theories that posit that pattern-separation-like binding mechanisms are

not unique to the HIP. Further clarifying the mechanisms of feature binding should benefit

from systematic comparisons of multi-feature representations and whether they vary with

task, type of stimulus, and/or experience.

© 2017 Elsevier Ltd. All rights reserved.
happened, where, and with whom (Johnson & Raye, 1981;

1. Introduction

Episodic memory is characterized by remembering experi-

ences as unique combinations of features, for example, what
hology, Yale University, 2
ale.edu (R.N. van den Ho

rved.

onert, R. N., et al., Holistic
7.01.011
Tulving, 1972; Underwood, 1969). A fundamental question

for cognitive neuroscience is how such features are combined

(i.e., bound) during encoding to later form the basis of the

subjective experience of remembering, which entails context
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(Mandler, 1980) or source (Johnson, Hashtroudi, & Lindsay,

1993) memory. Theories of episodic/source memory and

medial temporal lobe (MTL) function have long ascribed the

hippocampus (HIP) a central role in mnemonic binding

(Cohen, Poldrack,& Eichenbaum, 1997; Davachi, 2006; Johnson

& Chalfonte, 1994; O'Reilly & Rudy, 2001; Ranganath, 2010;

Squire, Stark, & Clark, 2004). For example, there have been

several variations of the idea that the HIP establishes associ-

ations among features that are initially represented in other

brain regions [e.g., objects in perirhinal cortex (PRC) and

spatial location in parahippocampal cortex (PHC);

Eichenbaum, Yonelinas, & Ranganath, 2007; Howard,

Kumaran, Olafsdottir, & Spiers, 2011]. However, there is

increasing evidence that regions other than HIP also support

mnemonic binding. Thus, recent discussions have shifted

from whether the HIP uniquely subserves feature binding to

what differentiates the nature of bound representations in

different MTL regions, for example, the types of information

that are bound, and/or the way information is bound (Cowell,

Bussey, & Saksida, 2010; Norman, 2010; Shimamura, 2010).

Advances in understanding potential functional divisions

of the MTL require a clearer characterization of the nature of

feature binding. In approaching this task, we assume that

different regions of the brain likely represent different com-

binations of features. For example, the fusiform face area

(FFA) is thought to represent combinations of face parts (Liu,

Harris, & Kanwisher, 2010; McCarthy, Puce, & Belger, 1999),

the PRC to represent combinations of object parts (Erez,

Cusack, Kendall, & Barense, 2016), and the PHC to represent

associations among elements of a scene (Aminoff & Tarr,

2015). Rather than ask whether a region represents a partic-

ular feature or feature combination, we ask how particular

features are combined in various regions. One possibility is

that the HIP is unique in the way in which it forms multi-

feature representations (Marr, 1971; O'Reilly & McClelland,

1994). Another possibility is that there are similar binding

mechanisms throughout theMTL and it is the content of what

is bound that varies across regions (Cowell et al., 2010;

Shimamura, 2010).

Here we consider two possibilities of how feature combi-

nations may be represented e in a feature-based manner or

holistically.1 In a feature-based representation, the feature-

combination is completely predicted by the features (i.e., the

whole is simply a combination of parts). If a region contains

feature-based representations, it should be able to classify

each feature (e.g., Persons A vs B, and Locations X vsY) and the

identity of the feature combination (e.g., AX vsAY vs BX vs BY).

In a holistic representation, the feature-combination is rep-

resented in a way that is independent of each feature/part

representation. If a region contains holistic representations, it

should be able to classify the identity of a feature combination

despite poor classification of the features themselves. We

used simulations to validate this spectrum of feature-based

versus holistic representation (Supplemental Material). Note
1 Note that we use the term holistic not to refer to the
completeness of an episodic memory (as in Horner, Bisby, Bush,
Lin, & Burgess, 2015) but instead to refer to the fact that
feature-combinations are not purely a function of individual
features.
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that one's research question will largely determine how fea-

tures and feature combinations are defined; here we used

combinations of people, objects, and scenes as they are

common source features of episodic memories.

There is reason to believe that HIP might form holistic

representations of complex feature-combinations. For

example, the Complementary Learning Systems (CLS) model

(Marr, 1971; McClelland & Goddard, 1996; McClelland,

McNaughton, & O'Reilly, 1995; Norman, 2010; Norman &

O'Reilly, 2003) proposes that incoming features are bound

within the HIP such that each feature combination is repre-

sented by an independent set of neurons, yielding separate

representations for similar experiences (pattern separation).

The CLS model has been used to predict that representations

for similar experiences should be more distinct in HIP

compared to other regions (Yassa & Stark, 2011). However, an

important aspect of pattern separation is that independent

neurons represent each multi-feature event so that experi-

ences are orthogonally represented (i.e., holistically repre-

sented) rather than in a way that is systematically based on

features. Therefore, while evidence that pairs of stimuli are

represented distinctly in the HIP (e.g., Bakker, Kirwan, Miller,

& Stark, 2008; Lacy, Yassa, Stark, Muftuler, & Stark, 2011;

LaRocque et al., 2013; Motley & Kirwan, 2012) is consistent

with pattern separation, it does not necessarily mean that the

way in which the HIP forms such distinct multi-feature rep-

resentations is through pattern separation. Another possibil-

ity is that the information represented in the HIP is more

distinctive because it binds representations from lower in a

processing hierarchy, such as item to item or item to spatial

context (Cowell et al., 2010; Shimamura, 2010). By this logic,

binding in the HIP and regions lower in the hierarchy could

occur via similar mechanisms, which could yield holistic or

feature-based representations.

Investigations of the types of content represented in the

MTL suggest the presence of holistic representation in HIP.

Across studies, it appears that the HIP contains reliable rep-

resentations of individual stimuli/memories but not category-

level information. Specifically, MTL cortex ismuch better than

the HIP at discriminating stimulus categories (e.g., faces, ob-

jects, scenes) (Huffman & Stark, 2014; Liang, Wagner, &

Preston, 2013; Martin, McLean, O'Neil, & K€ohler, 2013). None-

theless, the HIP is relatively good at discriminating different

allocentric spatial locations (Hassabis, Chu, Rees, Weiskopf,

Molyneux & Maguire, 2009), similar memories of movie clips

(Chadwick, Hassabis, & Maguire, 2011; Chadwick, Hassabis,

Weiskopf, & Maguire, 2010), and the perceived stimulus of

two alternatives when a 50% morph is shown in a forced-

choice discrimination task (Bonnici et al., 2011). Together,

these findings argue against the idea that the HIP detects

differences between stimuli merely because it contains more

information than other regions. However, additional studies

examining representations of features and feature-

combinations in a single experiment are required to more

directly compare feature and identity information in these

regions.

One functional magnetic resonance imaging (fMRI) study

of MTL activity during remembering used such an approach

(Chadwick et al., 2011). Participants viewed four video clips

containing one of two events (a character walking while
versus feature-based binding in themedial temporal lobe, Cortex
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folding a jacket, or walkingwhile carrying an umbrella) within

one of two scenes (two different storefront backdrops). Par-

ticipants studied these four video clips repeatedly until they

could vividly recall each. They were then scanned while

recalling each clip many times. The HIP, but not PRC, PHC, or

entorhinal cortex (ERC), could classify which of the four clips

was being remembered. Only the HIP could classify the scene

(i.e., storefront) being recalled, and no MTL region could

classify event content (i.e., jacket or umbrella event). To

determine if the successful 4-way classification in HIP was

merely due to scene information, Chadwick et al. examined

the errors made in the 4-way classification. They found that

the classifier was equally likely to misclassify the event,

misclassify the scene, or misclassify both, suggesting that 4-

way classification was not simply due to relatively high scene

classification. These results are consistent with holistic

memory representations in the HIP.

Some studies have found evidence consistent with holistic

representations outside the HIP. First, object-evoked activity

in lateral occipital cortex (LOC) and PRC is more than just the

sum of their activity to individual features (Erez et al., 2016). In

that study, objects with different feature combinations were

presented (A, B, C, AB, AC, BC). Researchers then calculated

theoretical responses to full-featured objects (ABC) by adding

the responses to the simpler objects (e.g., AB þ C). They then

compared different kinds of theoretical ABC responses (e.g.,

AB þ C vs A þ BC). They reasoned that if a region's response to

an object is purely the sum of its response to the object's
features, then there should be little difference between ABþ C

and A þ BC. Using this approach, they found that both LOC

and PRC responded differently to different arrangements of

the same features, suggesting that object representations in

these regions are not just coding the presence of a set of

particular object features (A, B, C). While these results are

interesting, it is important not to limit the definition of

feature-based representations to those based on a simple sum

of neural activity. For example, MacEvoy and Epstein (2011)

used multivoxel pattern analysis (MVPA) to examine how

scenes are represented in the parahippocampal place area

(PPA) and LOC. Participants viewed scenes from four cate-

gories (kitchen, bathroom, intersection, and playground) and

objects that are typical of each scene (refrigerator, oven,

bathtub, toilet, car, traffic signal, slide, and swing set). Not

surprisingly, patterns of activity in PPA elicited by the indi-

vidual objects could be used to classify object category and

those elicited by thewhole scenes could be used to classify the

scene category. Interestingly, a classifier trained on PPA ac-

tivity elicited by individual objects could not classify scene

category. These results suggest that the PPA contains repre-

sentations of scenes that are more than just object-based. A

second finding suggesting holistic representation outside the

HIP comes from a recent study by Coutanche and Thompson-

Schill (2015). Patterns of activity in anterior temporal lobe

(ATL) could classify four imagined food-types (tangerine,

carrot, lime, and celery) but not their characteristic features

(color and shape). This suggests that the ATL contains holistic

rather than feature-based object representations. Taken

together, these studies provide preliminary evidence that

holistic representations can be found outside the HIP and even

outside MTL.
Please cite this article in press as: van den Honert, R. N., et al., Holistic
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While the results of these studies comparing feature and

identity classification are consistent with the idea that certain

regions contain holistic representations, two caveats remain

when applying these findings to the current question. First, in

the case of Chadwick et al. (2011) and Coutanche and

Thompson-Schill (2015), it remains possible that above-

chance identity classification was based on feature classifi-

cation that did not reach significance at the threshold used

(e.g., classifying A1 vs A2 at 53%, and B1 vs B2 at 52%may yield

small but significant 4-way classification of A1B1, A1B2, A2B1,

and A2B2). The current experiment includes a novel analysis

that addresses this possibility. Second, both MacEvoy and

Epstein (2011) and Coutanche and Thompson-Schill (2015)

found identity representations that were more than a com-

bination of the examined features (i.e., objects in the PPA, and

color and shape in the ATL), but some features were not

examined. For example, PPA representations of scenesmay be

based on object and layout features (Harel, Kravitz, & Baker,

2013; Kornblith, Cheng, Ohayon, & Tsao, 2013; Kravitz, Peng,

& Baker, 2011) and the representation of layout was not

examined. While it is impossible to examine every possible

feature, the current experiment used individual stimuli that

are purely re-combinations of specific feature elements. If

identity classification exists in the absence of feature classi-

fication under these conditions, we can be relatively confident

that identities are represented holistically.

In summary, different regions of the MTL likely represent

feature-combinations of varying types, but it is unclear how

these combinations are represented. To address this question,

we showed participants eight pictures that were constructed

with three source features: a scene feature (outdoor or indoor),

an object feature (bike or luggage), and a person feature (face

or body). We assessed whether different regions in MTL

contain holistic or feature-based representations of these

complex combinations of visual features. In addition to

providing information that should help clarify the nature of

representations resulting from feature binding, the outcome

should provide evidence relevant to models emphasizing the

uniqueness of hippocampal representation, such as the CLS

model (O'Reilly&McClelland, 1994), andmodels that posit that

bindingmechanisms similar to those operating in HIP operate

outside the HIP (Cowell et al., 2010; Shimamura, 2010).
2. Material and methods

2.1. Participants

Participants were members of the Yale/New Haven commu-

nity who gave written, informed consent in accordance with

the Yale Human Investigations Committee. All participants

had normal or corrected-to-normal vision and no history of

neurological or psychiatric illness. Data from 25 participants

(17 females, mean age ¼ 23.4 ± 3.9 years) were analyzed. Data

from 5 additional participants were excluded for movement

(2), technical difficulties during scanning (2), or finishing too

few runs to analyze (1). Excessive movement was defined as

having more than 50 TRs for which the Euclidean norm of the

motion derivative exceeded 1.0.
versus feature-based binding in themedial temporal lobe, Cortex
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2.2. Experimental procedure

During fMRI, participants viewed each of eight pictures a

number of times (duration ¼ 2 sec, ISI ¼ 6, 8, or 10 sec; Fig. 1B).

As shown in Fig. 1A, the pictures were constructed from three

features: a scene feature (outdoor or indoor), an object feature

(bike or luggage), and a person feature (face or body). To

encourage participants to attend to all of the features on every

trial, and to engage event processing, they were asked to

indicate howmany times they had seen that particular picture

so far in the current scanning run (1e4). Participants were

allowed to make their response at any point the picture was

on the screen. Each picture was shown 4 times in each of 10

runs, for a maximum of 40 instances of each stimulus (eigh-

teen participants completed 10 runs, six completed 9 runs,

and one participant completed 8 runs). The maximum num-

ber of runs were conducted for a scan time slot given partic-

ipants' arrival time, ease of setting them up, etc. For each

participant, the order of the stimuli was generated using the

optseq2 program (https://surfer.nmr.mgh.harvard.edu/

optseq).
2.3. fMRI acquisition & preprocessing

Data were acquired using a Siemens Trio TIM 3.0T scanner

and a 32-channel head coil. Functional images were collected
Fig. 1 e The eight stimuli corresponding to the eight combinati

and indoor or outdoor. Pictures were shown one at a time for 2

last second of the ITI, the fixation cross disappeared to cue the

Please cite this article in press as: van den Honert, R. N., et al., Holistic
(2017), http://dx.doi.org/10.1016/j.cortex.2017.01.011
usingmulti-band echo planar imaging [parameters: repetition

time (TR) ¼ 2,000 msec, echo time (TE) ¼ 32 msec, flip angle

a ¼ 62�, field of view (FOV)¼ 200mm,matrix¼ 100� 104, slice

thickness ¼ 2 mm, 69 slices aligned with the long axis of the

HIP, multi-band factor ¼ 3]. High-resolution images were ac-

quired using a 3D MP-RAGE sequence (TR ¼ 2530 msec,

TE¼ 2.77msec, a¼ 7�, FOV¼ 256mm,matrix¼ 256� 256, slice

thickness ¼ 1 mm, 176 slices).

fMRI data were preprocessed using the Analysis of Func-

tional Neuroimages (AFNI; Cox, 1996) software package

(http://afni.nimh.nih.gov/afni). The first 4 volumes (8 sec) of

each functional dataset were discarded to allow the signal to

reach steady-state magnetization. Motion correction and

alignment were completed with a single transformation:

functional volumes were aligned to each other and to each

individual's high-resolution anatomical scan in one trans-

formation. Each voxel's time series was scaled (within runs) to

a mean of 100 and a maximum of 200 to allow betas to more

closely reflect percent signal change. The data were not

spatially smoothed.
2.4. Regions of interest

Regions of interest were defined using FreeSurfer's automatic

volumetric segmentation (http://surfer.nmr.mgh.harvard.

edu/) with a probability threshold of 50% (Fig. 2). We defined
ons of three source features: face or body, bike or luggage,

sec, with a 6e10 sec jittered inter-trial-interval. During the

upcoming stimulus.
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Fig. 2 e Eight of eleven regions of interest (not shown: fusiform cortex, lateral occipital cortex, and intraparietal sulcus) for a

representative participant. Regions of interest were generated using FreeSurfer's automated cortical segmentation (see

text).

c o r t e x x x x ( 2 0 1 7 ) 1e1 1 5
6 anatomical ROIs in occipitotemporal cortex and MTL: LOC,

fusiform cortex (FUS), PHC, defined as the posterior half of the

FreeSurfer parahippocampal cortex label, PRC, defined as the

anterior half of the FreeSurfer parahippocampal cortex label,

ERC, and HIP. The LOC was included because of its object

sensitivity (Malach et al., 1995) and the fusiform was included

because it includes face-selective cortex (Kanwisher,

McDermott, & Chun, 1997; McCarthy, Puce, Gore, & Allison,

1997). Custom Matlab scripts filled very small gaps in the

automatic FreeSurfer ROIs, and visual inspection with minor

manual edits ensured precise anatomical coverage. Voxels at

the border of two ROIs and assigned to both (e.g., PHC and HIP)

were excluded from the analysis. All anatomical ROIs were

bilateral.

We also defined 5 additional functional ROIs, as positive

controls, using a probability atlas of face and scene responses.

The probability atlas was developed in a previous study

(Engell & McCarthy, 2013) that examined BOLD responses to

faces, scenes, houses, and both biological and non-biological

motion in localizer data from over 100 participants. The

atlas contains, at each voxel, the percentage of participants

who showed a category-sensitive response (defined by a z-

score of ±1.65 in the localizer contrast) to either faces or

scenes. The peak voxels within unique clusters of a given

contrast (i.e., face > scene or scene > face) were identified,

corresponding to peaks within regions known as the right

occipital face area (rOFA), the right fusiform face area (rFFA),

the PPA, bilateral, the intraparietal sulcus (IPS, bilateral) and

retrosplenial cortex (RSC, bilateral). Finally, a small sphere

was then centered around this peak voxel to define each of the

5 functional ROIs (radius 3 mm for face-peaks, 7 mm for

scene-peaks). We focused on the right, as opposed to left FFA

because of the known right hemisphere bias for face pro-

cessing (Kanwisher et al., 1997; McCarthy et al., 1997; Rossion,

Hanseeuw, & Dricot, 2012).

2.5. Classification analyses

We estimated activity for each trial within each voxel using

AFNI's 3dREML.Motion parameters and 1st, 2nd, and 3rd order

polynomials (drift) were included as nuisance regressors. Beta

estimates were normalized within each stimulus category for

a given classifier (e.g., within Faces and Bodies for a Face vs
Please cite this article in press as: van den Honert, R. N., et al., Holistic
(2017), http://dx.doi.org/10.1016/j.cortex.2017.01.011
Body discrimination). All classification analyses used a

Gaussian Naı̈ve Bayes (GNB) classifier implemented in

PyMVPA (Hanke et al., 2009). GNB classifiers are relatively good

at classification problems with small training samples

(Mitchell, Hutchinson, Niculescu, Pereira, & Wang, 2004;

Singh, Miyapuram, & Bapi, 2007). A leave-one-run-out cross-

validation scheme was used.

We conducted 7 different classification analyses: three 2-

way classifications for each of the individual features (e.g.,

face vs body), three 4-way classifications for each feature pair

(e.g., indoor-face vs indoor-body vs outdoor-face vs outdoor-

body), and one 8-way classification for the feature triplet (in-

door-face-bike vs indoor-face-luggage vs indoor-body-bike vs

indoor-body-luggage vs outdoor-face-bike vs outdoor-face-

luggage vs outdoor-body-bike vs outdoor-body-luggage). Mul-

ticlass classification was implemented using a one-against-all

scheme (e.g., Tatsumi, Tai,& Tanino, 2011) to avoidmulti-way

classification being based on any one of the three features.

For each classification analysis, we compared accuracy to

chance (~50% for 2-way, ~25% for 4-way, and ~12.5% for 8-

way) using permutation testing. For each participant, class

labels were shuffled 100 times and classification was done on

each of the shuffled sets of labels. (The mean of these 100

permutations determined the chance level used to baseline

Actual 8-way classifier performance in Fig. 4). We then

calculated a null group mean accuracy by randomly selecting

a value for each participant from their set of shuffle-based

accuracies and taking the average. We created a group null

distribution by calculating this group null mean 10,000 times.

The real groupmeanwas compared to this null distribution to

obtain a two-tailed p-value.

We first asked whether there was significant 8-way clas-

sification in the absence of significant 2-way classification,

which would suggest holistic rather than feature-based rep-

resentation of stimulus identity. Although unlikely, it is

possible that 2-way classification that did not reach signifi-

cance might accumulate to yield minimal, but significant, 8-

way classification. Therefore, we developed a novel way to

directly compare binary and multiclass classification. To

begin, we computed a Synthetic 8-way classifier that was

based on the 2-way classifiers. For each participant, we took

their 2-way classifier accuracies (e.g., Face vs Body ¼ 60%, In-

door vs Outdoor ¼ 55% and Bike vs Luggage ¼ 50%) and
versus feature-based binding in themedial temporal lobe, Cortex
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Fig. 3 e Average response for each presentation condition.

Error bars are ±1 standard error of the mean.
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multiplied them to generate a 2-way-based Synthetic 8-way

accuracy (e.g., 60%*55%*50% ¼ 16.5%). As with the actual

classifiers, chance was determined empirically using permu-

tation testing. Because the purpose of the Synthetic classifier

was to control for identity classification that was due to

feature information, permutations involved shuffling labels so

that identity information was preserved but feature infor-

mation was destroyed. Specifically, labels were shuffled

across, but not within, identities (e.g., all FaceeIndooreBike

trials might be re-labeled as BodyeIndooreLuggage trials).

Any lingering identity information found by the Synthetic

classifier after shuffling would be based on something other

than feature information. The higher performance of the

Synthetic classifier in unshuffled data compared to the shuf-

fled data then reflects the amount of feature information in a

region. Permutations were done 100 times for each subject.

The mean of these 100 permutations determined the chance

level used to baseline Synthetic classifier performance in

Fig. 4.
Fig. 4 e Actual versus Synthetic 8-way performance (% above em

the mean, provided for information (but see description of perm

Significant differences at an alpha of .05 are marked with an * w

a ~. FUS ¼ fusiform cortex; LOC ¼ lateral occipital cortex; rOFA

PPA ¼ parahippocampal place area; RSC ¼ retrosplenial cortex

ERC ¼ entorhinal cortex; PRC ¼ perirhinal cortex; PHC ¼ parah

Please cite this article in press as: van den Honert, R. N., et al., Holistic
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Finally, we directly compared Actual and Synthetic 8-way

classifier performance using a paired sample t-test. Because

the Actual and Synthetic 8-way classifiers may have slightly

different levels of chance, we again used permutation tests to

create a null t-distribution and obtain a p-value for the paired

sample t-test. For each participant, we randomly selected one

of their 100 permutation-derived Synthetic classifier accu-

racies and one of their 100 permutation-derived Actual clas-

sifier accuracies. A paired sample t-test then compared these

Actual and Synthetic scores across the 25 participants. We

repeated this 10,000 times to build a null t-distribution. The t-

value from the unshuffled data analysis was compared to this

null t-distribution to obtain a two-tailed p-value.
3. Results

3.1. Behavioral results

Participants' average frequency judgments for each presen-

tation number are shown in Fig. 3. For example, if a partici-

pant responded “1” to half of the 2nd presentation trials, and

“2” to the other half, their average frequency judgment for 2nd

presentation trials would be 1.5. As evident in Fig. 3, partici-

pants' average frequency judgments increased as the true

presentation number increased [F(3,21) ¼ 52.76, p < .001]. The

mean proportion of items at each presentation frequency for

which judgments were accurate were: 1st presentations ¼ .70

(SD ¼ .13), 2nd presentations ¼ .50 (SD ¼ .16), 3rd

presentations ¼ .46 (SD ¼ .12), and 4th presentations ¼ .66

(SD ¼ .20).

3.2. Classification results

Table 1 shows the results of the 2-way and 8-way classifica-

tion analyses for regions outside the MTL. Each feature could

be classified in the ROIs known to process that category and in

some additional visual regions. Face versus Body (person)

features were classified above chance in FUS, rOFA, rFFA, as

well as in LOC, IPS. Indoor versus Outdoor (scene) features

were classified above chance in PPA, RSC, IPS, as well as in

FUS, LOC, and rOFA. Bike versus Luggage (object) stimuli were

classified above chance in LOC, as well as in FUS, rOFA, and
pirically derived chance). Error bars are ±1 standard error of

utation tests in text used to determine significance).

hile marginal differences at an alpha of .10 are marked with

¼ right occipital face area; rFFA ¼ right fusiform face area,

; IPS ¼ intraparietal sulcus; HIP ¼ hippocampus;

ippocampal cortex.
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Table 1 e 2-Way and 8-way classification accuracy versus chance in visual cortex.

Region Face versus Body Indoor versus Outdoor Bike versus Luggage Actual 8-way

FUS M ¼ 73.31; p < .001 M ¼ 53.54; p < .001 M ¼ 53.64; p < .001 M ¼ 21.46; p < .001

LOC M ¼ 78.95; p < .001 M ¼ 54.21; p < .001 M ¼ 60.52; p < .001 M ¼ 28.34; p < .001

rOFA M ¼ 62.77; p < .001 M ¼ 52.00; p ¼ .002 M ¼ 53.38; p < .001 M ¼ 16.11; p < .001

rFFA M ¼ 56.98; p < .001 M ¼ 50.30; p ¼ .841 M ¼ 50.93; p ¼ .174 M ¼ 14.85; p < .001

PPA M ¼ 50.78; p ¼ .246 M ¼ 51.64; p ¼ .007 M ¼ 50.80; p ¼ .242 M ¼ 13.97; p < .001

RSC M ¼ 49.86; p ¼ .839 M ¼ 51.89; p ¼ .002 M ¼ 49.18; p ¼ .213 M ¼ 13.23; p ¼ .090

IPS M ¼ 53.81; p < .001 M ¼ 53.08; p < .001 M ¼ 52.16; p < .001 M ¼ 13.96; p < .001

c o r t e x x x x ( 2 0 1 7 ) 1e1 1 7
IPS. Table S1 shows the results of the 4-way classification

analyses.

Table 2 shows the results of the 2-way and 8-way classifi-

cation analyses for regions in the MTL. The PHC showed sig-

nificant 8-way classification despite non-significant 2-way

classification (classification of objects was below chance),

indicating the presence of holistic representations. This

signature of holistic representation did not occur for any other

region. However, simply seeking the presence and absence of

significance across multiple analyses may have limited our

ability to detect holistic representations. For example, the HIP

had marginally significant (p < .076) 8-way classification

despite overall fairly poor performance on the 2-way classi-

fiers. We therefore compared Actual and Synthetic (feature-

based) 8-way classifier performance in each region (Fig. 4,

Table S2). Again, we found evidence of holistic representation

in PHC as Actual 8-way classifier performance was signifi-

cantly greater than Synthetic performance (Note that syn-

thetic performance in PHC was particularly low in part

because of anti-classification of objects in the region. Some

may see this as causing an artificial difference between the

actual and synthetic classifier performance. However, we

think the anti-classification of objects in PHC would make it

all the more difficult to achieve purely feature-based signifi-

cant 8-way classification). This more direct test of holistic

representation did not provide evidence for holistic repre-

sentation in HIP (see Discussion). Interestingly, Actual 8-way

was significantly less than Synthetic 8-way performance in

rOFA, suggesting that features are more discriminable in this

region when considered in isolation rather than in

combination.

Of course, it is possible that features other than those

manipulated contributed to classifier performance. For

example, 8-way identity classification might arise from the

difference between the contour of a face against the dock and

the contour of a face against the living room carpet. If lower-

level features support 8-way identity classification, we would

expect low-level information to contribute to significant Per-

son, Scene, and Object classification. This might be the case in

the LOC, where there was significant feature information and
Table 2 e 2-Way and 8-way classification accuracy versus chan

Region Face versus Body Indoor versus Outd

HIP M ¼ 51.17; p ¼ .054 M ¼ 50.48; p ¼ .476

ERC M ¼ 50.64; p ¼ .221 M ¼ 50.72; p ¼ .270

PRC M ¼ 50.43; p ¼ .525 M ¼ 50.95; p ¼ .134

PHC M ¼ 49.15; p ¼ .242 M ¼ 50.58; p ¼ .334

Please cite this article in press as: van den Honert, R. N., et al., Holistic
(2017), http://dx.doi.org/10.1016/j.cortex.2017.01.011
marginally significant Actual versus Synthetic classification.

Importantly, the PHC did not have significant 2-way classifi-

cation, suggesting that the 8-way identity classification in that

region was not due to low-level features that differentiate

each picture.

In summary, the PHC contained identity information in the

absence of feature information, and the amount of identity

information was above and beyond what would be expected

based on the amount of feature information in the region.
4. Discussion

This study addressed a relatively unexplored but fundamental

question about how events are represented in the MTL. We

asked whether the source feature combinations that make up

complex events are represented in a holistic or feature-based

manner. Using MVPA of activity associated with systematic

combinations of person, place, and object features, we found a

number of regions (FUS, LOC, rOFA, rFFA, PPA, IPS, and PHC)

that were able to classify among 8 stimulus identities, but only

the PHC was able to do so in the absence of significant feature

information (person, place, object). Furthermore, identity

classification in the PHC was significantly greater than what

would be expected based on the amount of feature informa-

tion in the region (i.e., Synthetic identity classification),

providing evidence that the PHC represented these stimuli

holistically. Our results extend investigations of MTL function

by moving beyond defining ‘what’ is represented ‘where’ in

the brain to beginning to answer questions about the nature of

these representations.

Specifically, our finding of holistic representations of

scene-object-person information in PHC indicates that

pattern-separation-like binding mechanisms occur outside

HIP (Cowell et al., 2010; Shimamura, 2010), and provide further

information about the types of information that PHC can ho-

listically bind. These findings augment previous findings that

the ATL and PPA contain identity representations that are not

purely a function of object or scene features, respectively

(Coutanche & Thompson-Schill, 2015; MacEvoy & Epstein,
ce in medial temporal lobe.

oor Bike versus Luggage Actual 8-way

M ¼ 49.27; p ¼ .258 M ¼ 13.28; p ¼ .076

M ¼ 48.84; p ¼ .072 M ¼ 12.55; p ¼ .981

M ¼ 49.36; p ¼ .284 M ¼ 11.86; p ¼ .104

M ¼ 48.36; p ¼ .006 M ¼ 13.58; p ¼ .014
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2011). Our design extends this work by controlling combina-

tions of three specific features that varied across stimulus

identities, and suggests the value, in future studies, of directly

comparing in different brain regions feature and identity

representations that occur under common task conditions.

The relatively poor feature classification in HIP adds to

previous findings that HIP does not contain strong category

information (Huffman & Stark, 2014; Liang et al., 2013; Martin

et al., 2013). However, our findings in the HIP are inconclusive

with regard to holistic versus feature-based representation e

HIP identity classification was close to significant despite only

containing significant classification of one of the three fea-

tures (i.e., the person feature). Similarly, Chadwick et al. (2011)

found that the HIP could classify memories composed of

events and background scenes despite containing scene but

not event feature information. Evidence for holistic repre-

sentation in that study was more compelling than in the

current study because identity classification did not seem to

simply be a byproduct of scene classification. When we spe-

cifically testedwhether identity classificationwas a byproduct

of feature information in our study, identity classification in

HIP was not higher than would be expected based on feature

information in the region (i.e., Synthetic identity classifica-

tion, Table S2). There are several possible reasons that we

found less conclusive evidence for holistic representation in

HIP than Chadwick et al. (2010). We directly compared binary

and multiclass classification using a Synthetic 8-way classi-

fier, and this was a more stringent test of holistic represen-

tation. Also, our experiment examined feature and identity

representation for a different set of features. Although it is

generally assumed that HIP binds features in a domain gen-

eral way, sensitivity to detecting characteristics of hippo-

campal function likely varies with feature set, task context,

and other factors. Notably, we examined feature-combination

representation while each of eight distinct pictures were

perceptually present (i.e., a recognition task) whereas Chad-

wick et al.'s participants were remembering four well-learned

short videos when cued with a still from the video (a recall

task). Finally, our multiple feature but single picture stimuli

may have evoked holistic scene representation in PHC while

the temporally-extended events used as stimuli in Chadwick

et al., may have made it easier to detect holistic representa-

tion in HIP (e.g., see Hsieh, Gruber, Jenkens& Ranganath, 2014,

for evidence of hippocampal representation of joint item and

temporal information).

Even if we had found significant evidence for holistic rep-

resentation in HIP, evidence for holistic representation in PHC

is inconsistent with the idea that feature combinations are

uniquely represented by pattern separation in HIP (Marr, 1971;

McClelland & Goddard, 1996; McClelland et al., 1995; Norman,

2010; Norman & O'Reilly, 2003). While other fMRI studies have

found distinct representations within the HIP (Bakker et al.,

2008; Lacy et al., 2011; LaRocque et al., 2013; Motley &

Kirwan, 2012), only a few have examined whether the na-

ture of multi-feature representations in the HIP is unique,

namely more sparse than in other regions (e.g., Hulme, Skov,

Chadwick, Sibner, & Ramsoy, 2014; Wixted et al., 2014). Given

that the CLS model specifically localizes pattern separation to

the dentate gyrus, it would be interesting in future studies to

use a scan protocol that identifies separate HIP subregions to
Please cite this article in press as: van den Honert, R. N., et al., Holistic
(2017), http://dx.doi.org/10.1016/j.cortex.2017.01.011
see if evidence for holistic representation in HIP is specific to

dentate gyrus, and/or how the type of representation in HIP

and other brain areas is affected by paradigms that promote or

inhibit pattern separation (e.g., Duncan, Sadanand,&Davachi,

2012). Some such work suggests that holistic representations

may be selectively present in the CA3 subfield of HIP when

using a retrieval task (Chadwick, Bonnici, & Maguire, 2014).

A number of challenging open questions remain regarding

how feature combinations are represented in different brain

areas. Task demands may change the way in which feature

combinations are represented. For example, color and object

combinations can be processed separately as two components

of a stimulus, or as a unitized combination of features (e.g.,

Staresina & Davachi, 2008; 2010). In other cases, a task may

affect the salience of a feature or even generate an otherwise

absent feature. For example, a set of artificial face identities

may be defined by their gender, age, and expression. An ori-

enting task that requires evaluating the trustworthiness of

each face (Todorov, Mende-Siedlecki, & Dotsch, 2013) may

cause face representations to include the trustworthiness

judgment. In this case, faces might be represented in a way

that is more than just gender þ age þ expression (i.e., holis-

tically). On the other hand, the trustworthiness judgment

could be defined as a feature itself (i.e., a cognitive operations

feature, Johnson & Raye, 1981; Johnson, et al., 1993), rather

than impetus for holistic representation. Clearly, the defini-

tion of what qualifies as holistic will vary based on how fea-

tures are defined and the research question. Also important,

expertise or experience may make certain feature combina-

tions begin to be processed as a single whole rather than

collection of parts. For example, statistical regularities can

change how stimuli are represented in the MTL (Schapiro,

Kustner, & Turk-Browne, 2012; Schapiro, Rogers, Cordova,

Turk-Browne, & Botvinick, 2013).

In other cases, the form of multiple-feature representa-

tions may be more influenced by the stimuli and which brain

regions are considered than the psychological context (e.g.,

task or previous experience) of the participant. For example, it

is likely that how features are defined will partially determine

whether a region contains holistic representations. Object

sensitive regions may contain holistic representations of ob-

ject parts, face sensitive regions of face parts, language sen-

sitive regions may contain holistic representations of visual

and auditory language information, etc. In some cases, ho-

listic representation may even be an intrinsic property of the

feature combinations themselves, for example in the case of

gestalt illusions (Kubilius, Baeck, Wagemans, & Op de Beeck,

2015). Finally, holistic representation may be an intrinsic

property of the anatomical or computation characteristics of a

given brain region e as is predicted for the dentate gyrus by

computational models (Marr, 1971; McClelland & Goddard,

1996; McClelland et al., 1995; Norman, 2010; Norman &

O'Reilly, 2003).
Understanding how features are bound together is cen-

tral to understanding the mechanisms by which source

features are encoded and activated, giving rise to the sub-

jective experience of episodic memory. Approaches similar

to the one we used here should be useful to further char-

acterize the conditions under which holistic or feature-

based representations are observed. Is there something
versus feature-based binding in themedial temporal lobe, Cortex
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special about the computational and anatomical properties

of MTL regions that allow them to represent unique stimuli?

Are the ‘unitized’ representations posited in PRC (Diana,

Yonelinas, & Ranganath, 2007) similar in type to those in

PHC or other brain regions? Answers to these questions

depend on continuing to refine our characterization of what

is meant by source features, feature binding, and multi-

feature representations.

In conclusion, we examined a specific hypothesis about

how feature combinations are represented in the brain. We

found evidence for holistic representations, as opposed to

feature-based representations, in PHC, contributing to further

understanding of the nature of scene representation in this

region. As cognitive neuroscience continues to examine con-

tent representation using MVPA, it will be informative to

systematically compare the type of multi-feature represen-

tations in different brain regions, and determine whether this

varies with task, stimulus type and/or experience.
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