
Behavioral/Systems/Cognitive

Implicit Perceptual Anticipation Triggered by Statistical
Learning

Nicholas B. Turk-Browne,1 Brian J. Scholl,2 Marcia K. Johnson,2 and Marvin M. Chun2

1Department of Psychology, Princeton University, Princeton, New Jersey 08540, and 2Department of Psychology, Yale University, New Haven, Connecticut
06520

Our environments are highly regular in terms of when and where objects appear relative to each other. Statistical learning allows us to
extract and represent these regularities, but how this knowledge is used by the brain during ongoing perception is unclear. We used rapid
event-related fMRI to measure hemodynamic responses to individual visual images in a continuous stream that contained sequential
contingencies. Sixteen human observers encountered these statistical regularities while performing an unrelated cognitive task, and were
unaware of their existence. Nevertheless, the right anterior hippocampus showed greater hemodynamic responses to predictive stimuli,
providing evidence for implicit anticipation as a consequence of unsupervised statistical learning. Hippocampal anticipation based on
predictive stimuli correlated with subsequent processing of the predicted stimuli in occipital and parietal cortex, and anticipation in
additional brain regions correlated with facilitated object recognition as reflected in behavioral priming. Additional analyses suggested
that implicit perceptual anticipation does not contribute to explicit familiarity, but can result in predictive potentiation of category-
selective ventral visual cortex. Overall, these findings show that future-oriented processing can arise incidentally during the perception of
statistical regularities.

Introduction
While sensory input is complex and dynamic, it also contains
regularities that have shaped sensory systems over phylogenetic
time (Simoncelli and Olshausen, 2001). But regularities are also
pervasive over more local timescales, in the sense that certain
stimuli repeatedly precede, follow, or co-occur with other stim-
uli. By detecting and representing these regularities through sta-
tistical learning, we can parse complex sensory information into
useful chunks, such as words, scenes, and events.

Statistical learning refers to an unconscious process by which
regularities are automatically segmented from continuous envi-
ronments, where the only cues for segmentation are statistics of
co-occurrence between specific stimuli. This form of learning
was first reported in studies of word learning: after passively lis-
tening to a brief syllable stream that contained unexpected re-
peated syllable subsequences (“words”), infants and adults could
discriminate between words and nonwords based on transitional
probabilities alone (Saffran et al., 1996; Aslin et al., 1998). Such
learning also occurs for visual regularities consisting of repeated
spatial and temporal configurations of shapes, locations, mo-
tions, and actions (Chun and Jiang, 1998; Fiser and Aslin, 2001,
2002; Olson and Chun, 2001). Statistical learning differs from
other forms of learning because regularities are not presegmented
into discrete trials (cf. paired associate learning), the underlying

structure is stimulus specific (cf. artificial grammar learning),
and the learning is automatic and incidental (cf. some varieties of
category learning). These features allow statistical learning to op-
erate over naturalistic sensory input without engaging deliberate/
conscious effort.

Statistical learning is ubiquitous, and most research has fo-
cused on defining the scope of stimuli over which it operates. But
what are the behavioral and neural consequences of statistical
learning? The general belief has been that statistical learning pro-
duces memories of indivisible higher-order chunks (Orbán et al.,
2008), such that later familiarity depends on complete input pat-
terns (Fiser and Aslin, 2005; Turk-Browne et al., 2008). However,
a long history of research suggests that organisms are not passive
detectors, but rather use partial input to actively form expecta-
tions about the future (Tolman, 1932). Given that statistical
learning can result in stimulus–stimulus associations (Turk-
Browne and Scholl, 2009), the brain may use partial cues to im-
plicitly anticipate upcoming perceptual events.

The primary brain system responsible for associative process-
ing is the medial temporal lobe (Cohen and Eichenbaum, 1993).
In particular, the hippocampus is involved in relational memory
encoding (Mitchell et al., 2000; Davachi and Wagner, 2002; Chua
et al., 2007) and several forms of implicit learning (Chun and
Phelps, 1999; Schendan et al., 2003; Harrison et al., 2006), includ-
ing statistical learning (Turk-Browne et al., 2009). The hip-
pocampus may participate in the acquisition of statistical
regularities, for example, by binding elements of events (Howard
et al., 2005; Jensen and Lisman, 2005). Here we explore how the
hippocampus and other regions may also participate in the ex-
pression of learning by reconstructing and anticipating the future
based on learned associations (Marr, 1971; McClelland et al.,
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1995; Norman and O’Reilly, 2003). Such
anticipation would suggest that future-
oriented processing can arise incidentally
during the perception of statistical
regularities.

Materials and Methods
Overview
We conducted an event-related fMRI study to
explore implicit perceptual anticipation as a
potential consequence of statistical learning,
distinct from deliberate guessing or planning.
fMRI is an ideal tool for studying anticipation,
since we can monitor for anticipatory re-
sponses in the brain while observers perform
an unrelated behavioral task. Previous fMRI
studies of this type of statistical learning have
examined responses to regularities, but could
not examine anticipation because responses
were collapsed across entire blocks or runs
(McNealy et al., 2006; Turk-Browne et al.,
2009). We reasoned that items at the beginning
of predictive temporal regularities should en-
gage anticipatory processes relative to items
that fuel no prediction.

Participants viewed color photographs one
at a time, and were required to make a categor-
ical response to each one. Unbeknownst to
them, the trial sequence in each run was con-
structed from four pairs of images, as well as
four single images that were neither reliably
predicted by the prior image nor predictive of
the next image (Fig. 1). Within each pair, the
Paired images were always presented consecu-
tively and in the same order: the First image
followed by the Second image. The pairs were
randomly sequenced with Unpaired images,
and the interval between individual images—
both within and between pairs—was jittered and orthogonal to the pair
structure. Thus, pairs existed only in terms of the greater transitional
probabilities between Paired images. To assess anticipation, we com-
pared hemodynamic responses for First images (that reliably pre-
dicted the next image) versus Unpaired images (that did not). Any
differential responses necessarily reflect (un)certainty about future
images, rather than surprise associated with the current image, since
neither kind of image was itself predictable.

Participants
Sixteen naive observers (8 females; mean age: 24) participated in one
fMRI session for monetary compensation. All were right handed with
normal or corrected-to-normal vision.

Procedure
Stimuli and apparatus. Images were color photographs of male/female
faces and indoor/outdoor scenes. They were displayed on a projection
screen at the back of the scanner bore, viewed with a mirror attached to
the head coil. Stimuli subtended �15.9 � 15.9°. Each image was pre-
sented for 200 ms to discourage eye movements, and fixation was further
aided by superimposing a dot on the center of all images and by cropping
face stimuli such that the eyes were roughly centered in the image. Be-
havioral responses were collected with an MRI-compatible fiber-optic
button box.

Trial sequence. Twelve novel images were used in each run, with three
unique exemplars each of male faces, female faces, indoor scenes, and
outdoor scenes. To introduce statistical regularities in the trial sequence,
eight of these images were grouped into pairs: two pairs consisted of a
particular face preceding a particular scene, and the other two consisted
of a particular scene preceding a particular face. Based on pilot testing, we
decided to use two pairs of each type rather than fully crossing category

pairs to preserve statistical power (still only 12 trials of each condition per
run); additionally, because of the unpaired images, the category of an
upcoming stimulus could not be reliably predicted based on the category
of the current stimulus, and results from the familiarity test suggest that
participants were learning patterns of specific exemplars. The remaining
four images (two faces and two scenes) were not paired. The sequence of
images in each run was generated from six repetitions of each pair of
images and each unpaired image (for a total of 72 trials/run) presented in
a random order, with the sole constraint that the same pair or image
could not be repeated back-to-back. The runs of four participants were
longer and contained additional manipulations that we are pursuing
separately. However, each of these runs began with the same full run of 72
trials that all other participants experienced, and thus were truncated
during analysis such that the runs of all participants were structured
identically.

It is worth explicitly noting two aspects of this experimental design.
The first is that we tested only two levels of predictiveness in assessing
anticipation: First images that deterministically predicted which exact
image appeared next versus Unpaired images that weakly predicted
which one of several possible images appeared next. This dichotomous
treatment of transitional probabilities was used because this design is
conventional across several previous behavioral investigations of statis-
tical learning (e.g., Saffran et al., 1996; Fiser and Aslin, 2002; Kirkham et
al., 2002; Turk-Browne et al., 2005; Brady and Oliva, 2008; Orbán et al.,
2008). Since this was an initial rapid event-related fMRI study of this type
of statistical learning, we designed our stimuli to connect directly with
prior work. The second aspect of the design worth noting is that pairs
were repeated only six times, because we assume that statistical learning
can occur very quickly. Prior work demonstrates the remarkable speed of
statistical learning (Turk-Browne et al., 2009), with evidence of learning
emerging after only 2–3 repetitions of a regularity. Moreover, the small

Figure 1. Experimental protocol. Portion of a trial sequence containing two example Pairs and two example Unpaired images.
Paired images always appeared in the same ordered pair, but that pair was preceded and followed by other images at different
times in the run. Participants responded “face” or “scene” to each image.

11178 • J. Neurosci., August 18, 2010 • 30(33):11177–11187 Turk-Browne et al. • Implicit Anticipation



number of repetitions allowed us to conduct several fMRI runs with pairs
constructed from different images, both increasing our power and di-
minishing the likelihood of any item effects on learning.

Pairs were used to establish the image sequence, but only one image
was presented at a time with images separated by jittered intervals of 3,
4.5, or 6 s. These intervals were sampled randomly from a distribution
(50% 3 s, 30% 4.5 s, 20% 6 s), which helped psychologically in reducing
the generic predictability of trial onsets, and methodologically in allow-
ing the statistical separation of blood-oxygen level-dependent (BOLD)
responses during analysis. It is worth noting that the pair structure could
introduce correlations between the onsets of First and Second condi-
tions. To this end, before each scan, optimized runs were generated by
creating random jittered trial sequences, convolving these designs with a
hemodynamic response function (HRF), and iterating until the pairwise
correlations between any two regressors reached acceptable levels (all r
values �0.3). Any residual collinearity could only hurt our statistical
power by increasing the variability of parameter estimates, and even in
such cases the difference between conditions (rather than their contribu-
tion relative to baseline) can be estimated efficiently.

Task. Participants were told that we were studying how the brain pro-
cesses different types of images. On each trial, they responded as quickly
and accurately as possible as to whether the image was a face or a scene by
pressing one of two buttons using the index and middle fingers of their
dominant right hand. Responses slower than 3 SDs above the run mean
were excluded from the response time analysis. In addition, one run from
one participant was excluded from analysis due a high proportion of
missed responses and low overall accuracy (81%), indicating sleepiness;
accuracy on this simple task in all other runs from this and all other
participants was �94%. In analyzing behavioral performance, we con-
ducted two planned comparisons, First versus Unpaired (to assess the
anticipation factor) and Unpaired versus Second (to assess the predict-
ability factor). Before scanning, participants completed a short practice
run that contained no pairs, and images from this run were not reused.
After the anatomical scans, they completed five runs of the main task that
lasted 316.5 s each.

Familiarity test. Following the last run of the main task, participants
completed a familiarity test for the pairs presented in that run. Only these
last run pairs were tested due to massive interference (and perhaps decay)
for pairs from earlier runs, and time constraints in the scanning session.
On every test trial, participants were presented with two images, and were
required to judge whether the sequence of images was familiar by re-
sponding “old” or “new” with a button press. Half of trials contained a
pair from the run that had been repeated six times, and the other half of
trials contained a foil of two images that had never appeared sequentially
in the last run, but that had individually been repeated six times as well.
Critically, the foils were constructed by swapping the Second image be-
tween the two pairs of the same type: in other words, if Face1–Scene1 and
Face2–Scene2 were pairs during the scanning run, then they were tested
alongside the foils Face1–Scene2 and Face2–Scene1. All pairs and foils
were tested an equal number of times to avoid any differential contribu-
tion to familiarity from the test items themselves. Since the categorical
structure of the pairs was preserved for the foils and the novelty of indi-
vidual images was equated, any ability to discriminate pairs from foils
reflects statistical learning of the pair exemplar relations. We assessed
discriminability by comparing hits (old responses to pairs) versus false
alarms (old responses to foils) using A� (Grier, 1971; Aaronson and
Watts, 1987). Each pair and foil was tested four times (32 trials total).

Localizer. Following the familiarity test, participants completed one
run of a functional localizer. Blocks of 12 novel faces or scenes alternated
every 24 s, with block order counterbalanced across participants. Partic-
ipants judged whether faces were male or female and whether scenes
occurred indoors or outdoors by pressing one of two buttons. Each im-
age was presented for 200 ms with a 1500 ms stimulus onset asynchrony,
resulting in 18 s blocks followed by 6 s of fixation. There were eight blocks
of each type, and the run lasted 402 s.

Data acquisition
Neuroimaging data were collected on a 3T Siemens Trio scanner using an
eight-channel head coil. Functional data were acquired with a T2*-

weighted gradient-echo EPI sequence (TE � 25 ms; TR � 1500 ms; FA �
90°; matrix � 64 � 64). Covering the whole brain, 26 oblique axial slices
aligned parallel to the anterior commissure/posterior commissure line
(3.5 � 3.5 mm in-plane, 5 mm thickness) were acquired in an interleaved
order. Each main task run contained 211 volumes, and the localizer run
contained 268 volumes. Anatomical data consisted of two T1-weighted
sequences: a coplanar FLASH sequence and a high-resolution 3D
MPRage sequence.

Data analysis
Preprocessing. The first six volumes of each functional run were dis-
carded to allow for T1 equilibration. Using Brain Voyager QX (Brain
Innovation), data were then corrected for slice acquisition time, cor-
rected for head motion, spatially smoothed (8 mm FWHM Gaussian
kernel), detrended, and high-pass filtered with 128 s period cutoff.
Functional runs were then registered to the coplanar anatomical scan,
which was in turn registered to the high-resolution anatomical scan;
data were normalized into Talairach space, and interpolated to 3 mm
isotropic voxels.

Whole-brain analysis. To analyze our main task runs we used a sum-
mary statistic random effects approach. At the first (within-subjects)
level, we estimated parameters encoding condition-specific activations.
This involved specifying stimulus functions for each trial type, which
were then convolved with a canonical hemodynamic response function
to form regressors. Separate regressors were entered for faces and scenes,
leading to a total of six regressors: First-face, First-scene, Second-face,
Second-scene, Unpaired-face, and Unpaired-scene. For the whole-brain
contrasts, estimates were collapsed across face and scene types. Although
pairs could only be learned after one presentation, we included all trials
to equate the number of item repetitions across conditions (this decision
was conservative in that it could only hurt our chances of observing
differences). See below for exploratory parametric analyses that modeled
monotonic changes as a function of stimulus repetition and condition.
Data were normalized with a percentage change transform by subtracting
and dividing by the mean, and thus parameter estimates correspond to
the percentage signal change in the BOLD response for each condition in
every voxel for each participant.

The parameter estimates were then taken to a second (between-
subjects) level for group inference. To assess regionally specific contrast
effects, we performed one-sample t tests over linear combinations of the
parameter estimates for different conditions across subjects. For the pri-
mary contrast of First � Unpaired, voxels were judged significant if their
t value reflected p � 0.001 (two-tailed) and they were part of a cluster of
least five contiguous significant voxels. This cluster size threshold was
calculated based on Forman et al. (1995), but improved to take into
account smoothness of 3D statistical maps (Goebel et al., 2006). In par-
ticular, the spatial smoothness of each group t test or correlation was
computed separately, and we then performed Monte Carlo simulations
by iteratively generating random maps, injecting the same spatial
smoothness, thresholding at the predetermined statistical level, and
identifying the number and size of clusters. To select a cluster threshold,
we chose the cluster size for which the proportion of iterations contain-
ing at least one cluster of that size or larger was �0.05; this resulted in a
corrected � rate of 0.05 at the cluster level. The simulations also provide
an estimate of the corrected p values for each cluster size, which are
reported in the main text for each cluster along with the center-of-mass
Talairach coordinates.

We did not extract mean parameter estimates from clusters for further
comparisons, since the manner in which the regions were defined was
not independent of such comparisons (as all comparisons relied on the
Unpaired baseline condition). We also did not perform contrasts be-
tween First and Second images because the results would be uninterpret-
able. In particular, we designed our experiment to be able to isolate
anticipation induced by the First images. The Second images do not
provide an appropriate baseline for testing anticipation because, while
themselves not predictive, they are predictable. Thus, the comparison of
First versus Second images would conflate predictiveness with predict-
ability, and it would be impossible to interpret any findings. The appro-

Turk-Browne et al. • Implicit Anticipation J. Neurosci., August 18, 2010 • 30(33):11177–11187 • 11179



priate baseline is provided by the Unpaired images, which were neither
predictive nor predictable.

Correlation analyses. To assess relationships between indices of learn-
ing, we used correlation coefficients at the second (between-subjects)
level. We conducted four analyses to explore the relationship between
neural anticipation and subsequent facilitation (behavioral priming,
neural priming, and behavioral familiarity). The first analysis was ROI
based: we examined the relationship between anticipation scores (First–
Unpaired parameter estimate difference) from the hippocampal region
obtained in the group contrast described above and behavioral priming
scores (Unpaired–Second RT difference) across individuals. The analysis
assessed whether individual differences in hippocampal anticipation pre-
dicted individual differences in behavioral priming. The second analysis
was conducted across the whole brain: we explored whether neural an-
ticipation scores (First–Unpaired parameter estimate difference) in brain
regions other than the hippocampus predicted an individual’s behavioral
priming score (Unpaired–Second RT difference). This brain-behavior
correlation helped assess which anticipation signals were directly related
to facilitated response times. The third correlation analysis involved a
combined ROI and whole-brain approach: we explored whether the an-
ticipation scores from the hippocampus—as used in the first analysis
above—predicted an individual’s neural priming score (Unpaired–Sec-
ond parameter estimate difference) in any brain area. This brain– brain
correlation helped assess which regions may be influenced by the hip-
pocampus in terms of their subsequent processing of predicted items.
Finally, a fourth analysis was also conducted across the whole brain: we
examined whether behavioral familiarity scores (A� on the familiarity
test) could be predicted from neural anticipation and/or neural priming
scores obtained during the earlier face/scene task. This correlation exam-
ined how familiarity judgments about statistical regularities—the canon-
ical measure of statistical learning—relate to the extent of an individual’s
anticipation based on First items and/or priming based on Second items.
Because our sample size was small for detecting reliable correlations, we
used a more liberal voxel threshold of p � 0.005 (r � 0.66) for all of the
correlation analyses, but compensated with a larger minimum cluster
size, which resulted in an actual � rate of 0.05 (with cluster correction
computed independently for each correlation map due to differences in
smoothness).

Parametric analyses. To examine monotonic changes in the brain as a
result of statistical learning, we implemented a modified general linear
model (GLM) that explicitly coded for an interaction between condition
and time. For each of the six existing regressors in our primary model, we
added a new regressor representing the parametric modulation of that
regressor by weighting the predicted hemodynamic response on each
trial by the number of times that the image had been presented before
(including the current instance). To capture the possibility that changes
could be linear or nonlinear, we modeled monotonic changes using one
of two functions: (1) an increasing linear function in which the repetition
numbers were used directly as the weights [1, 2, 3, 4, 5, 6], and (2) an
increasing logarithmic function in which the natural logs of the repeti-
tion numbers were used as the weights [0, 0.6931, 1.0986, 1.3863, 1.6094,
1.7918]. These new regressors were included in two separate models (one
for linear, one for logarithmic), both containing the existing unmodu-
lated regressors that represented the main effect of each condition, with
every trial equally weighted. Following standard practice (e.g., Büchel et
al., 1998), the modulated regressors were orthogonalized with respect to
the unmodulated regressors. Because the same linearly and logarithmi-
cally modulated regressors were fit for each subject and condition, we
contrasted the resulting parameter estimates in the same manner as was
done for the main analysis of anticipation.

ROI definition. We also examined BOLD responses in two a priori
regions of interest (ROIs) identified in each participant from the func-
tional localizer: the fusiform face area (FFA) (Kanwisher et al., 1997;
McCarthy et al., 1997) and the parahippocampal place area (PPA) (Aguirre
et al., 1998; Epstein and Kanwisher, 1998). A GLM including regressors
for the Face and Scene blocks was used to model activation during the
localizer. The contrast of Face versus Scene was used to define bilateral
FFA and PPA. For each region and hemisphere, the voxel with the great-
est t value in an anatomically restricted search was selected as the center

of a 4 mm sphere ROI if it reached at least p � 0.001 uncorrected.
Responses were collapsed across hemispheres for all subsequent analyses.

Results
Behavioral data
Online measures
Performance on the orthogonal categorization task was exam-
ined in terms of response time (RT) and accuracy (Fig. 2). If
statistical learning of the predictive associations had taken
place—and thus the Second image in a pair could be anticipated—
then performance on Second trials should be facilitated. This
pattern was observed in RT for Second versus Unpaired trials
(449 ms vs 464 ms, respectively; t(15) � 4.73, p � 0.0003), and
could not be explained by speed–accuracy tradeoffs (99.27% vs
98.83%, respectively; t(15) � 1.77, p � 0.10). In contrast with
most statistical learning studies, these results provide robust on-
line evidence of learning (see also Hunt and Aslin, 2001; Baker et
al., 2004; Harrison et al., 2006; Abla et al., 2008; Abla and
Okanoya, 2009; Turk-Browne et al., 2009). A second behavioral
effect was entirely novel: RTs for First trials were slowed com-
pared to Unpaired trials (470 ms vs 464 ms, respectively; t(15) �
2.61, p � 0.02); again, this did not result from speed–accuracy
tradeoffs (98.22% vs 98.83%, respectively; t(15) � 1.29, p � 0.2).
This slowing could be explained if First images engaged anticipa-
tory processes that competed with the determination and report
of the First image’s category. This effect could only be observed
because we used an Unpaired baseline; without such a baseline,
differential responses to the First versus Last item in a pair or
triplet (Abla et al., 2008; Abla and Okanoya, 2009) could reflect
either costs or benefits (or both).

Offline measures
To mirror past studies, participants completed a familiarity test
after the last run. On every test trial, participants were presented
with two images sequentially, and judged whether they had pre-
viously appeared in that order by responding “old” or “new.”
Trials were equally likely to contain an actual pair or a foil consisting
of two old images recombined into a novel order. Foils were con-
structed such that they could only be distinguished from pairs based
on learning of image exemplar pairs. Participants reliably discrimi-
nated pairs from foils (mean A� � 0.61; t(15) � 2.28, p � 0.04),
providing additional evidence of statistical learning.

Debriefing responses
To help assess the implicitness of learning, participants were
asked five questions outside the scanner: What do you think the
experiment was about? Did you use any particular strategy? How
do you think you did in the familiarity test? Have you done an
experiment like this before? Did you notice any repeating pat-

Figure 2. Task performance. Response time and accuracy of face/scene responses. Error bars
reflect one within-subject SEM. ***p � 0.001, *p � 0.05, ‡p � 0.1.
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terns during the face/scene task? Most relevantly, no participant
reported being aware of the extensive pair structure in the main
task. After being told about how the runs were constructed, 10
participants reported not being aware of any repeating patterns
until at least the familiarity test (when they were asked to judge
pairs); of the remaining group, the two participants who reported
noticing the most pairs (6 pairs, 3 pairs) performed at or below
chance on the familiarity test (A� � 0.50 and 0.44, respectively).
Moreover, when asked whether they had used any particular
strategies during the face/scene task, no participant reported at-
tempting to predict the next stimulus. These responses suggest
that participants did not engage in explicit anticipation—and
indeed that the large majority did not even realize that this was a
possibility.

fMRI data
Anticipation
Using a jittered rapid event-related design (where each image was
an event), we compared BOLD responses for First images that
reliably predicted the next image to Unpaired images that did not
predict the next image. Importantly, First and Unpaired condi-
tions were identical in all other respects: they contained equal
numbers of faces and scenes, the images were individually re-
peated an equal number of times, and in neither case could the
image itself be predicted from the preceding trial’s image.

The right anterior hippocampus (center of mass in Talairach
coordinates, 30, �8, �18; corrected significance of cluster, p �
0.002) responded more strongly to First than Unpaired trials
(Fig. 3), and was the only region that responded differentially to
these two conditions in either direction. This finding suggests
that the hippocampus helps to mediate a form of implicit percep-
tual anticipation. We describe these effects as anticipation with-
out assumptions about the underlying mechanism, although we
do consider some possibilities in the Discussion. These findings
provide converging evidence that the hippocampus is involved in
prospective processing during online perception, separate from
the explicit and deliberative tasks used in previous studies of
prospection (Addis et al., 2007). It is unclear why this effect was
specific to the right hippocampus, but note that other studies of
implicit learning have found stronger, if not selective, effects in
the right medial temporal lobe (Rose et al., 2002; Henke et al.,
2003; Turk-Browne et al., 2009).

Implicit learning may depend on medial temporal lobe re-
gions beyond the hippocampus proper (Manns and Squire,
2001). While no such regions were apparent at our a priori sta-

tistical threshold, we examined this possibility in an exploratory
analysis with a more liberal threshold (Table 1). We observed a
handful of additional regions with First � Unpaired and Un-
paired � First. Of particular note, the hippocampal cluster de-
scribed above grew larger and extended into the right perirhinal
cortex, and a new cluster emerged in right inferior temporal cor-
tex; both regions have been implicated in visual associative learn-
ing in primates (Miyashita, 1993; Erickson and Desimone, 1999).
In addition, a region of medial frontal/orbitofrontal cortex
emerged from this analysis; this region has been implicated in the
rapid generation of predictions that can constrain posterior ob-
ject recognition processes (Bar et al., 2006), but may also be in-
volved in more general associative prediction (Bar, 2007) and
reward prediction (Knutson and Cooper, 2005; Schultz, 2006).

In addition to the primary anticipation contrasts, we also con-
ducted a whole-brain analysis of Unpaired � Second and Sec-
ond � Unpaired contrasts. Only one region showed a significant
effect at the p � 0.05 cluster-corrected threshold: left postcentral
gyrus (�12, �38, 68; p � 0.02), which exhibited a stronger re-
sponse to Unpaired versus Second items. This main effect, com-
bined with the behavioral priming for Second items and several
correlational and ROI results described below, suggests that an-
ticipation has functional consequences for the processing of pre-
dicted items.

Anticipation correlations
In the previous analyses, we used t tests to find reliable activations
across subjects. In what follows, we describe analyses of correla-
tions between brain responses and various indices of learning
across subjects. To explore the consequences of anticipation for
behavior, we examined the relationship between neural anticipa-
tion based on predictive images and the subsequent response
time facilitation when the predicted image appeared (behavioral
priming). Specifically, across the whole brain, we correlated Firs-
t–Unpaired parameter estimate differences (neural anticipation
scores) with Unpaired–Second RT differences (behavioral prim-
ing scores) across participants. Several regions emerged from this
analysis: right inferior intraparietal sulcus (26, �81, 35; p � 0.001
corrected), right precuneus (1, �59, 58; p � 0.002 corrected),
right paracentral gyrus (�6, �40, 53; p � 0.002 corrected), left
middle temporal gyrus (�58, �56, 2; p � 0.02 corrected), left
middle occipital gyrus (�41, �83, 7; p � 0.001 corrected), and
left cerebellum (�34, �75, �28; p � 0.001 corrected); two of
these regions are shown in Figure 4A. In all cortical regions,
greater neural anticipation was associated with greater behavioral
priming (a positive correlation); a negative correlation was ob-
served in the cerebellum.

The hippocampal region that showed a main effect of First �
Unpaired did not correlate with behavioral priming across par-
ticipants either in a voxelwise manner or in a focused ROI anal-
ysis (r � 0.007). The fact that the hippocampus engages in
implicit anticipation but does not correlate with subsequent
behavioral priming is consistent with the suggestion that it sub-
serves generic revival of perceptual information based on associ-
ations, but that the fidelity with which the revived output is
represented in posterior regions determines the extent of priming
(Cabeza et al., 2008). Although we did not observe a direct link
between anticipation in the hippocampus and subsequent behav-
ioral priming, below we explore potential mediators of the effects
of the hippocampus on behavior with the goal of constraining
future models of these interactions.

Given the lack of a direct relationship to behavioral priming, we
explored whether anticipation in the hippocampus may instead cor-

Figure 3. Implicit perceptual anticipation. Greater response to trials consisting of First versus
Unpaired images in right anterior hippocampus (p�0.05 corrected), displayed on participants’
average high-resolution anatomical scan. No other clusters reached significance at this
threshold.
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relate with subsequent neural processing of
predicted items in other brain regions. Spe-
cifically, we correlated First–Unpaired pa-
rameter estimate differences from the
anterior hippocampal region discussed
above (hippocampal anticipation scores)
with Unpaired–Second parameter esti-
mate differences (neural priming scores)
in every voxel across participants. Two re-
gions emerged from this correlation anal-
ysis (Fig. 4B): midline early visual cortex
(0, �86, �3; p � 0.002 corrected), and left
inferior parietal lobule (�41, �69, 35;
p � 0.05 corrected). Note that since the
former region was obtained at the group
level, and since we did not conduct retino-
topic mapping, there is no way to assess
which precise visual areas exhibited this
effect.

Interestingly, these regions had opposite
relationships to the hippocampus: partici-
pants with greater hippocampal anticipa-
tion showed relatively reduced activation to
Second images in parietal cortex and rela-
tively greater activation to Second images
in early visual cortex. These findings sug-
gest that anticipation may reduce the need
for top-down modulation of active repre-
sentations from parietal cortex (Johnson
et al., 2007), while enhancing visual ex-
traction of information (Moores et al.,
2003; J. J. Summerfield et al., 2006). The
enhancement in early visual cortex was
accompanied by category-specific effects, as described below.
Overall, the fact that hippocampal anticipation correlated with
both increased and decreased responses to predicted items across
regions suggests that anticipation can have specific consequences
for different processes, as opposed to causing a global change in
readiness or arousal.

Familiarity correlations
The vast majority of studies of statistical learning involve a single
measure of learning— offline tests of familiarity—which occur
after the opportunity for statistical learning has passed (Fiser and
Aslin, 2001, 2002; Turk-Browne et al., 2008). A handful of studies
have used implicit measures based on response times (Chun and
Jiang, 1998; Olson and Chun, 2001; Baker et al., 2004; Turk-
Browne et al., 2005; Turk-Browne and Scholl, 2009) or neural
responses (Abla et al., 2008; Abla and Okanoya, 2009; Turk-
Browne et al., 2009). These studies have nevertheless observed
patterns of results similar to when familiarity measures were used
(Turk-Browne et al., 2005; Turk-Browne and Scholl, 2009), al-

though the brain seems to provide an especially sensitive measure
of statistical learning (Turk-Browne et al., 2009). However, the
event-related design of the current study gave us a unique oppor-
tunity to distinguish between two potential consequences of sta-
tistical learning that have been confounded in previous studies:
prospective anticipation based on the first item in a pair, and
retrospective recognition of the pair when the second item
appeared.

To assess which of these two effects may predict or underlie
subsequent familiarity, we correlated participants’ postscan fa-
miliarity A� scores with their neural anticipation score (First–
Unpaired) and their neural priming score (Unpaired–Second) in
every voxel. There was no significant relationship between antic-
ipation and familiarity in any brain region. In contrast, as seen in
Figure 5, several clusters showed robust correlations between
neural priming and familiarity: right precentral gyrus (47, �4, 19;
p � 0.002 corrected), right posterior parahippocampal cortex
(23, �51, �4; p � 0.02 corrected), medial prefrontal cortex and
anterior cingulate cortex (�4, 45, 0; p � 0.002 corrected), poste-

Figure 4. Consequences of anticipation. A, Correlations between neural anticipation (First–Unpaired parameter estimates) and
subsequent behavioral priming (Unpaired–Second response times). Both right intraparietal sulcus (IPS) and left middle occipital
gyrus (MOG) exhibited a positive relationship: greater BOLD responses to First trials correlated with faster behavioral responses to
Second trials (see text for other regions). B, Correlations between hippocampal anticipation (First–Unpaired parameter estimates
from hippocampus in Fig. 3) and neural priming (Unpaired–Second parameter estimates). In early visual cortex, greater hippocam-
pal anticipation (expressed as greater BOLD response to First relative to Unpaired) correlated with reduced neural priming (ex-
pressed as greater BOLD response to Second relative to Unpaired). In inferior parietal lobule (IPL), greater hippocampal anticipation
(expressed as greater BOLD response to First relative to Unpaired) correlated with greater neural priming (expressed as reduced
BOLD response to Second relative to Unpaired). All correlation maps thresholded at p � 0.05 cluster corrected. The primary results
are depicted in the brain slices, and scatter plots from the voxel with the weakest correlation in each cluster are shown for
visualization purposes only, to give a sense of the distribution of participants’ scores.

Table 1. Anticipation regions

Region Hemisphere BA x y z Extent (voxels) Peak t

First � Unpaired
Hippocampus/Medial temporal lobe R 31 �8 �19 78 6.86
Inferior temporal cortex R 20 44 �27 �14 12 4.14
Medial frontal gyrus L 25 �4 11 �18 11 4.43

Unpaired � First
Superior temporal gyrus L 41/22 �53 �28 7 31 �4.54
Postcentral gyrus R 3/4 12 �34 72 23 �4.50

Clusters resulting from exploratory analysis of First versus Unpaired (p � 0.005 voxel threshold; p � 0.05 cluster corrected). Coordinates are in Talairach space. L, Left; R, right.
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rior cingulate cortex (�12, �51, 18; p � 0.002 corrected), left
anterior parahippocampal cortex (�28, �35, 1; p � 0.05 cor-
rected), and left insula/middle temporal gyrus (�46, �16, 0; p �
0.002 corrected). There was a positive correlation in all regions,
where greater familiarity was associated with more neural prim-
ing (reduced BOLD responses to Second relative to Unpaired).
The lack of any correlations with anticipation and the abundance
of correlations with neural priming suggest that familiarity was
related to processing of the predicted Second items.

Given that neural priming was measured before the familiar-
ity test, we cannot determine whether the regions that exhibited
these correlations were involved in encoding that supported later
familiarity, or whether they provided a signal of incidental re-
trieval success that might later have been co-opted to make famil-
iarity judgments. Indeed, the specific set of regions that we
obtained is consistent with both interpretations (Henson et al.,
1999; Konishi et al., 2000), but note that these studies reported
enhanced BOLD responses, and in our case, reduced processing
of Second items (i.e., more priming) predicted greater familiar-
ity. Our results may thus be more consistent with findings that
deactivations (especially in midline regions) accompanying en-
coding and attenuated responses resulting from stimulus repeti-
tion can support better subsequent memory (Daselaar et al.,
2004; Turk-Browne et al., 2006). Regardless, our results suggest
that priming may support familiarity, but that anticipation per se
may be a qualitatively distinct learning effect, unseen in previous
studies of statistical learning where familiarity tests are the stan-
dard. In the face of our robust evidence of anticipation in behav-
ior and the brain, familiarity tests may thus be ill-suited for
studying the implicit and dynamic perceptual consequences of
learning.

Parametric effects
We tested whether any brain regions showed a greater increasing
trend for First versus Unpaired images. We used the Unpaired
control condition for this contrast to account for any changes due
to stimulus repetition alone (e.g., Reber et al., 2005). Voxels were
judged significant if their t value reached p � 0.001, and they were
part of a cluster of at least seven contiguous significant voxels

(this and all subsequent cluster thresholds were determined
based on the smoothness of the statistical map to achieve a cor-
rected � of 0.05). No brain regions emerged from this contrast for
either the linear or logarithmic models, likely reflecting limited
statistical power for observing changes over six trials. Indeed, as
described in Materials and Methods, our experiment was de-
signed based on prior work showing the surprising speed of sta-
tistical learning (Turk-Browne et al., 2009), and under the
assumption that the analysis of First � Unpaired would be col-
lapsed across the short timeframe.

For completeness, we examined the reverse of the test above—
greater increasing trend for the Unpaired images versus the First
images—which yielded no regions in the linear model, but two
regions in the logarithmic model: subgenual anterior cingulate
cortex (�4, 14, �7; p � 0.001 corrected), and left middle occip-
ital gyrus (�35, �61, 6; p � 0.001 corrected). The pattern of
responses in these regions is consistent with them reflecting un-
certainty about the next stimulus, with reduced uncertainty over
time in response to the First images. We also compared the mod-
ulated regressors for Unpaired images to those for Second im-
ages. In both the linear and logarithmic models, a region of left
inferior frontal gyrus in BA 45 (�51, 36, 0; p � 0.03 corrected)
showed a greater increasing trend for the Unpaired images versus
the Second images. The pattern of responses in this region is
consistent with it tracking prediction error, with increasingly ac-
curate predictions over time of the Second images. The reverse
contrast— greater increasing trend for the Second images versus
the Unpaired images—revealed a region of the left cerebellum
(�46, �48, �32; p � 0.03 corrected) in the linear model, and
nothing in the logarithmic model.

Category-specific effects
To examine effects in ventral visual cortex, we first localized face-
and scene-selective ROIs (FFA and PPA, respectively), and then
ran the GLM for the main task in each participant. Importantly,
we did not collapse across face and scene categories as in all other
analyses. Results are shown in Figure 6 for the PPA. There were
three results of particular interest: (1) First-faces, which pre-
dicted that a scene would appear next in the sequence, resulted in

Figure 5. Familiarity Correlations. A, No regions showed a correlation between neural anticipation (First–Unpaired parameter estimates) and subsequent familiarity (A� values). B, Correlations
between neural priming (Unpaired–Second parameter estimates) and subsequent familiarity (A� values). The right precentral gyrus (PCG), right parahippocampal cortex (PHC), medial prefrontal
cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), insula, and middle temporal gyrus (MTG) exhibited a positive relationship, i.e., greater Unpaired–Second difference
correlated with more familiarity. All correlation maps thresholded at p � 0.05 cluster corrected.
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a marginally greater PPA response versus
Unpaired-faces (t(15) � 2.04, p � 0.06);
this activation may reflect implicit prepa-
ration for the upcoming stimulus, or
preparation of resources relevant to its
processing. (2) Second-faces, which could
be predicted based on the previous item,
resulted in an attenuated PPA response
versus Unpaired-faces (t(15) � 2.74, p �
0.02); this deactivation may reflect the fact
that the PPA was suppressed in anticipa-
tion of a stimulus that was not expected to
be in its preferred domain. (3) Second-
scenes, which could be predicted based on
the previous trial, resulted in a greater
PPA response versus First-scenes (t(15) �
2.29, p � 0.04); this activation may reflect
potentiation of the PPA in anticipation of
a stimulus from its preferred domain. The
strongest test of this last claim is the con-
trast of Second- versus Unpaired-scenes,
but this difference did not reach signifi-
cance; nevertheless, the Second � First
difference is suggestive.

In the FFA, differences between condi-
tions for a given image category were not
statistically reliable. This may be related to
the fact that the FFA is a less pure probe
of category-specific processing in that it
responds to scenes as well as to faces. In
contrast, the PPA generally shows no re-
sponse to faces whatsoever, and thus is a
purer probe of scene processing (Epstein
and Kanwisher, 1998). This distinction
was apparent in our data (collapsing over
conditions): the FFA response to scenes was 32% of its response
to faces, and the PPA response to faces was �8% of its response to
scenes (i.e., a slight deactivation). Moreover, a similar lack of
sensitivity to top-down effects for FFA versus PPA has been ob-
served in other studies of the ventral stream (Johnson et al.,
2007). Given the mnemonic role of parahippocampal cortex,
however, it will be important for future work to test whether the
PPA results generalize to other category-specific visual regions.
However, it is worth noting that the scene-selective parahip-
pocampal region (posterior parahippocampal gyrus and collat-
eral sulcus) is typically spatially distinct from the more anterior
parahippocampal region involved in contextual processing
(Aminoff et al., 2007; cf. Epstein and Ward, 2010).

Discussion
We found evidence of implicit behavioral and neural anticipation
(i.e., associative prediction) on the basis of regularities embedded
surreptitiously in a continuous sequence of images. Participants
were unaware of these contingencies, and yet statistical learning
was manifested in behavioral priming for predictable images and
behavioral costs for predictive images. We identified a potential
neural mediator of this implicit anticipation, the anterior hip-
pocampus, which showed enhanced responses on trials consist-
ing of predictive images relative to trials consisting of images that
were not predictive. This hippocampal anticipation correlated
with neural differences in how the predicted image was processed
in early visual cortex (greater activation for predicted items) and
left inferior parietal lobule (less activation for predicted items).

Anticipation in posterior brain regions, including right intrapa-
rietal sulcus and left middle occipital gyrus, correlated with be-
havioral priming. Additional correlation analyses suggest that
anticipation and explicit familiarity may be dissociable. Finally, a
region of interest analysis revealed predictive potentiation of a
category-specific visual area in anticipation of stimuli from that
category, along with suppression of the area when predictable
stimuli came from a different category. These findings demon-
strate an important functional consequence of this type of statistical
learning for online behavior and neural processing—implicit per-
ceptual anticipation.

The hippocampus and surrounding medial temporal lobe
constitute the primary system involved in associative/relational
memory (Cohen and Eichenbaum, 1993). For example, paired-
associate learning is a form of explicit MTL-dependent learning.
In such tasks, participants are instructed to study pairs of words
or images, and learning is tested by providing one word or image
and having participants recall (Shimamura and Squire, 1984) or
recognize (Sakai and Miyashita, 1991) the associated item. While
on the surface this protocol seems similar to ours in the sense that
participants learn stimulus–stimulus pairs, there are at least three
major differences. First, the two tasks involve different modes of
learning. Paired associate learning is intentional because partici-
pants are told in advance to try to remember the pairs, whereas
statistical learning in our study was incidental because partici-
pants were not oriented to the presence of pairs, they performed
an unrelated cover task on individual images, and they ultimately
did not report awareness of the pair structure. Second, although

Figure 6. PPA Results. Parameter estimates for the main task extracted from bilateral PPA localized in each participant.
Example ROIs are depicted as black spheres on inset brain. Error bars reflect one within-subject SEM. *p � 0.05, ‡p � 0.1.
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the two tasks may result in similar kinds of associative knowledge,
there are critical differences in how the pairs are learned. In
paired associate learning, to-be-learned word/image pairs are
studied together in discrete, clearly defined pair-units, whereas
pairs in our study were embedded within a continuous trial se-
quence such that they could only be segmented and learned on
the basis of statistics. Third, the two tasks differ with respect to
how associates are revived. In paired associate learning, partici-
pants are prompted with one item and deliberately try to remem-
ber the paired item, whereas in our study learning was expressed
without conscious effort or awareness during the orthogonal cat-
egorization task.

Despite these differences, our study may reveal a primitive and
implicit mechanism that mediates learning about spatial and
temporal contingencies in a variety of contexts, regardless of
whether expression of learning is automatic or self-initiated and
whether the revived content reaches awareness. Indeed, the con-
sequences of associative learning in primate inferior/medial tem-
poral neurons are similar whether associations are formed in
explicit paired-associate tasks (Sakai and Miyashita, 1991), or as a
result of exposure to task-irrelevant regularities, such as a fixed
training order (Miyashita, 1988).

Thus far, we have focused on the role of the hippocampus in
stimulus-specific learning and anticipation. However, the hip-
pocampus may play a broader role in learning by detecting the
presence of structure to be learned in the first place. For example,
in the serial reaction time task, a sequence of visual shapes or
locations is presented to subjects and they must execute the correct
unique response to each visual stimulus (Nissen and Bullemer,
1987). If the sequence of stimuli is constructed using a table of
transitional probabilities, several information-theoretic mea-
sures can be calculated for each stimulus. The left hippocampus
has been observed to track one such measure, mutual information,
which corresponds to a running representation of the conditional
uncertainty between successive pairs of stimuli (Harrison et al.,
2006); interestingly, this region did not reflect whether the uncer-
tainty of the current stimulus was reduced by the prior stimulus (the
reduction in surprise). In other words, activation in the left hip-
pocampus reflected the extent to which preceding stimuli in the
sequence were informative on average, regardless of whether the last
stimulus was informative about the current stimulus (Harrison et al.,
2006). Because the conditions in our study were distributed uni-
formly throughout each run, and every run had the same pseudo-
randomized statistical structure, the difference we observed for First
versus Unpaired cannot be explained by mutual information. More-
over, this difference also cannot reflect reduction in surprise, since
both First and Unpaired images were unpredictable. Thus, the hip-
pocampus may be involved both in anticipating future events on the
basis of stimulus-specific regularities, and in tracking a general sense
of whether such regularities exist in a given context.

The medial temporal lobe is not only involved in the encoding
and retrieval of past events, but also in the deliberate imagination
of future events (Addis et al., 2007; Hassabis et al., 2007). The
current results reveal a new type of prospection that takes place
during ongoing visual processing wherein the hippocampus can
draw on incidentally learned associations to implicitly anticipate
upcoming perceptual events. More broadly, implicit anticipation
during ongoing behavior may be highly adaptive, helping to
make optimal choices during decision making (Ferbinteanu and
Shapiro, 2003; Johnson and Redish, 2007), prepare for and avoid
aversive stimuli (Solomon et al., 1986; Cheng et al., 2008), and, as
demonstrated here, recognize objects more quickly. These find-
ings are consistent with cognitive models emphasizing the me-

morial consequences of sensory/perceptual processing as well as
of more deliberate reflective processing (Johnson, 1983; Kolers
and Roediger, 1984), and add to a growing body of work suggest-
ing that future planning and simulation is a core function of
cognition (Buckner and Carroll, 2007; Spreng et al., 2009).

We conclude by considering two potential benefits of implicit
perceptual anticipation. First, while we have treated anticipatory
responses as a stable consequence of statistical learning, anticipa-
tion may in turn help to refine learning when the resulting pre-
dictions are later confirmed or violated (Schultz and Dickinson,
2000). Indeed, temporal statistical learning is a particular case where
sensitivity to prediction errors is the only way that regularities can be
segmented (Perruchet and Pacton, 2006). Interestingly, the hip-
pocampus also plays an important role in comparing expectations to
outcomes (Kumaran and Maguire, 2007) and processing violations
(Rose et al., 2005). Such violation responses in the hippocampus and
in other regions that evaluate predictions (such as the putamen) may
in turn influence the strength of learned associations by gating the
connectivity between regions representing relevant stimuli and/or
responses (den Ouden et al., 2010). In addition to questions about
how changes in connectivity can influence learning, future research
will also need to consider how learned associations and anticipation
can prospectively alter connectivity and activation. For example, an
auditory tone that predicts a visual image can result in early visual
activation even when the image does not appear, with this unex-
pected event in turn increasing connectivity between auditory and
visual cortex (den Ouden et al., 2009).

Second, expectations derived from learned regularities may
facilitate perception by setting up templates (Hochberg, 1978).
Such effects have been observed in tasks of object recognition,
where the rapid extraction of low-spatial-frequency information
by orbitofrontal cortex (Bar et al., 2006) and task sets represented in
similar regions of ventromedial prefrontal cortex (C. Summerfield et
al., 2006; Summerfield and Koechlin, 2008) constrain posterior ob-
ject identification by modulating selective visual areas. These top-
down influences on perception have been interpreted in a Bayesian
framework that emphasizes the importance of encoding predictabil-
ity when optimizing perceptual inference (Friston, 2005). For exam-
ple, when stimulus repetitions are rare, and thus unpredictable, less
repetition suppression is observed in category-selective ventral tem-
poral cortex than when repetitions are frequent (Summerfield et al.,
2008). In our study, we have addressed learning and anticipation in
a conditional probabilistic context wherein individual images are
equally predictable, but the transitions between specific images are
not. These findings further demonstrate the sensitivity of the hip-
pocampus to predictability in the environment (Strange et al., 2005;
Harrison et al., 2006). In sum, while learning is a clear consequence
of perception, our study highlights the reciprocal nature of this in-
teraction, namely, that learning can result in implicit anticipation of
the perceptual future.
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